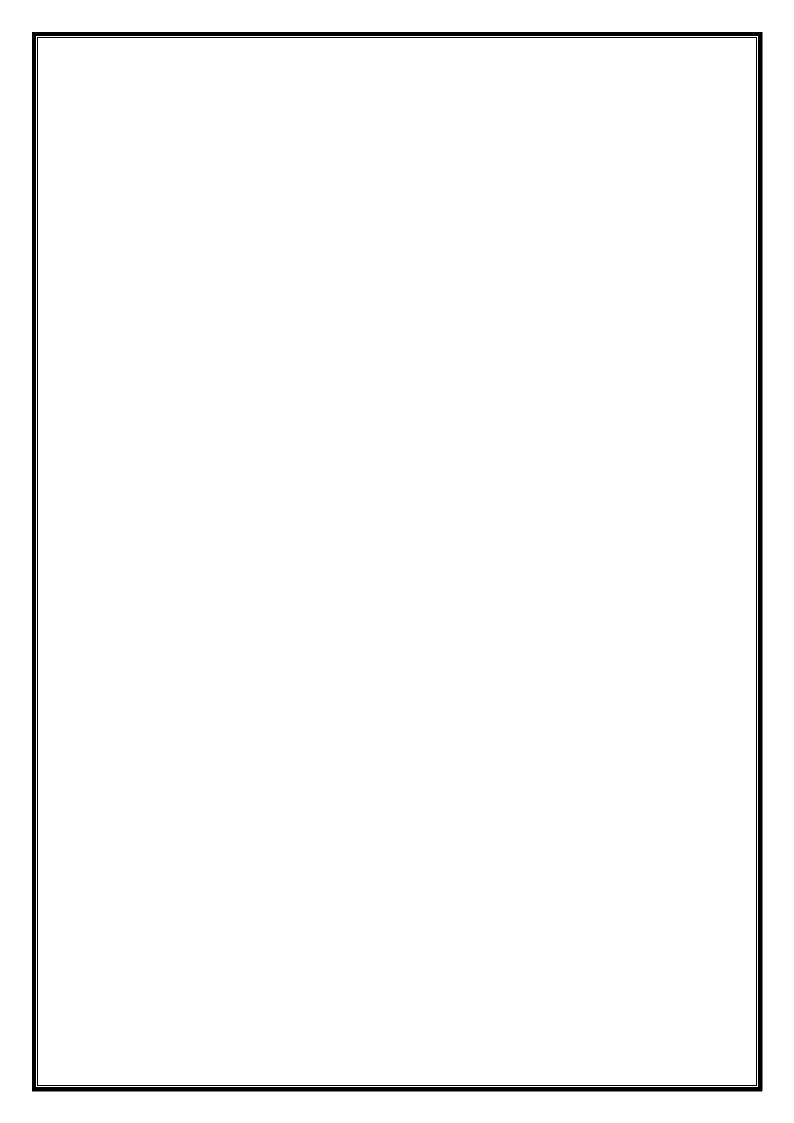


NRI INSTITUTE OF TECHNOLOGY

(An Autonomous Institution Permanently Affiliated to JNTUK, Kakinada) (Accredited by NAAC with "A" Grade and ISO 9001:2015 Certified Institution) POTHAVARAPPADU (V), (VIA) NUNNA, AGIRIPALLI (M), PIN – 521 212


DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE STRUCTURE FOR FINAL YEAR B.TECH PROGRAMME

				eme			Scher			No. of Credits	
SI.	Course			ruct				nination			
No	Code	Title of the Course	`	riods	Per	•	(Max	imum I	Marks)		
			Wee	· ·							
			L	Т	P	Total	CIA	SEA	Total		
1	PC	Microwave Engineering	3	1	-	4	40	60	100	4	
2	PC	Optical Communication	3	-	-	3	40	60	100	3	
3	PC	Digital Image Processing	3	1	-	4	40	60	100	4	
4	PE	Professional Elective III	3	-	-	3	40	60	100	3	
		(i)Satellite Communications &									
	RADAR Engineering										
		(ii) Data Base Management									
		Systems									
		(iii) Embedded System Design									
5	PE	Professional Elective IV	3	-	-	3	40	60	100	3	
		(i) Data Communications									
		(ii) Operating Systems									
		(iii) Analog IC Design									
6	MC	Indian Constitution (MC)	2	-	-	2	40	60	100	0	
7	PC	Microwave Engineering & OC Lab	-	-	2	2	40	60	100	1	
8	PR	Mini Project	-	-	8	8	40	60	100	4	
	•	Total	17	2	10	29	320	480	800	22	

IV YEAR I SEMESTER

IV YEAR II SEMESTER

SI. No	Course Code	Title of the Course	Inst	tru	chem ction er Wo	(Periods	Ex	cheme amina mum N	-	No. of Credit
			L	Т	Р	Total	CIA	SEA	Total	S
1	PE	Professional Elective V	3	-	-	3	40	60	100	3
		(MOOCS)								
		(i)Wireless								
		Communications and								
		Networks								
		(ii) Soft Computing								
		Techniques								
		(iii) Digital IC Design								
2	PE	Professional Elective VI (MOOCS)	3	-	-	3	40	60	100	3
		(i) Computer Networks								
		(ii) Internet of Things and								
		Applications								
		(iii) Artificial Intelligence								
3	PR	Main Project and		-	16	16	80	120	200	8
		Seminar								
		Total	6	-	16	22	160	240	400	14

Microwave Engineering

Lecture	e – Tutorial:	3-1 Hours	Internal Marks:	40
Credits		4	External Marks:	60
Prereq	uisites: Transmissio	n Lines, Electromagnetic Field '	Theory	
Course	Objectives:			
	o understand the st mplifiers.	ructure, and function of the va	rious microwave tubes as osc	illators an
• T	o learn about Micro	wave solid State Devices as osc	illators.	
• T	'o analyze fundame	ntal characteristics of Micro s	strip lines through electromag	gnetic fiel
c	oncepts.			
• T	o understand the	basic properties of wavegui	de components, Ferrite ma	terials an
		tup for measurement of Microw	vave parameters.	
	Outcomes:			
Upon s	uccessful completio	n of the course, the student w	ill be able to:	
CO1	Describe the mod with calculation of	les of operation of Klystron tube of efficiency.	e as microwave Oscillator and	amplifier
CO2	Analyze the mod	es of operation of Magnetron an	d TWT as microwave tubes.	
CO3	Explore different	modes of propagation in waveg	guide structures using EM field	concepts.
CO4	Understand funda field analysis.	mental characteristics of Micro	strip lines through electromag	netic
CO5		trix for various waveguide comp in a desired direction.	ponents and analyze the splitting	ng of the
CO6		peration of microwave Solid stan neters using a Microwave test be		S
		Course Content(Syllabus)		
		UNIT I		

Part-A: (O type Microwave Tubes-1)

Introduction, Microwave Spectrum and Bands, Applications of Microwaves. Microwave tubes -

O type and M type classifications. O-type tubes : Two Cavity Klystron– Structure, Principle of working ,Velocity Modulation Process and Applegate Diagram, Expressions for o/p Power and Efficiency, Applications.

Part-B: (O type Microwave Tubes-2)

Reflex Klystron – Structure, Principle of working, Velocity Modulation Process and Applegate Diagram, Mathematical Theory of Bunching, Power Output, Efficiency, Oscillating Modes, Applications.

<u>UNIT II</u>

Part-A: (Microwave Tubes-M type)

M-type Tubes Introduction, Magnetrons – Different Types, 8-Cavity Cylindrical Magnetron, Hull Cut-off Condition, and PI-Mode Operation. Slow Wave Structures-types, Structure of TWT, working of TWT amplifier, Applications.

Part-B: (Microwave Solid State Devices)

Microwave Solid State Devices: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diode – Principle, Characteristics, Basic Modes of Operation. Avalanche Transit Time Devices – Introduction, IMPATT and TRAPATT Diodes – Principle of Operation and Characteristics.

<u>UNIT III</u>

Part-A: (Wave Guides)

Rectangular Waveguides – TE/TM modes, Expressions for Fields, Cut-off Frequencies, Filter Characteristics, Mode Characteristics. Circular Waveguides- Introduction, TE/TM modes, Expressions for Fields, Impossibility of TEM Waves in Hollow Waveguides.

Part-B: (Micro strip Lines)

Introduction to Strip Lines, Basic Structure of Micro strip lines, Z_o Relations, Effective Dielectric Constant, advantages of micro strip lines, losses and applications of micro strip lines.

<u>UNIT IV</u>

Part-A: (Wave Guide Components)

Scattering Matrix– Significance, Formulation and Properties. S-Matrix Calculations for - E-plane and H-plane Tees, Magic Tee, Directional Couplers – 2Hole, Ferrite Components–Faraday Rotation, S-Matrix Calculations for Isolator, Circulator, Related Problems.

Part-B: (Microwave Measurements)

Description of Microwave Bench – Different Blocks and their Features, Precautions; Microwave Power Measurement – Bolometer Method, Measurement of Attenuation, Frequency, Guide Wavelength, VSWR.

TEXT BOOKS:

1. Microwave Devices and Circuits – Samuel Y. Liao, PHI, 3rd Edition, 1994

2.Microwave Principles – Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, CBS Publishers and Distributors, New Delhi,

REFERENCES:

1. Foundations for Microwave Engineering – R.E. Collin, IEEE Press, John Wiley, 2nd Edition, 2002.

2. Microwave Engineering - David M. Pozar, Wiley publications, 4th Edition

3. Microwave Engineering- Annapurna Das and Sisir K.Das, Mc Graw Hill Education, 3rd Edition.

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	3
CO2	2	2	-	2	-	3	-	-	-	-	-	-	2	-
CO3	3	3	-	-	3	-	-	-	3	-	2	-	-	-
CO4	3	3	-	2	-	-	-	-	-	-	-	-	-	3
CO5	2	2	-		-	-	2	-	-	-	-	2	-	
CO6	-	2	-	2	-	-	-	-	-	2	-	-	-	3

L T P C 3 0 0 3

OPTICAL COMMUNICATION

	OI OI	TICAL COMMUNICA	ATION	
Lectu	re – Tutorial:	3-0 Hours	Internal Marks:	40
Credi	ts:	3	External Marks:	60
Prere	quisites: Engineerir	g physics, Analog Communi	cations, Digital Communication	•
Cours	e Objectives:			
• Ar	alyze and design of	otical communication and fib	er optic sensor systems.	
			ect the performance of a commun	nication link
	1 1	s with their properties and the	1	
• •			otical fibers and their characterist	ics.
	• • •	0	ween direct modulation and exte	
			aser diodes, PIN, photo detecto	
		circuits) and apply in optical		
• De	sign the functional	ty of each of the component	s that comprise a fiber optic con	nmunication
system	, the models of anal	og and digital receivers.		
Cours	e Outcomes:			
Upon	successful complet	ion of the course, the stude	nt will be able to:	
CO1			munication and classify the typ	es of optical
		ndrical fibers using mathema		
CO2	Design the optical	fibers using various material	ls and to illustrate various attenua	ation losses.
CO3		dispersion models Apply sp minimize joint losses.	blicing techniques on fibers and	choose low
CO4			photo detectors, External quantum tion and error sources of optical t	
CO5			bres and Measurement of Atte	
	Dispersion, Eye pa	ttern.		
CO6	Design optical sys	tem with budget analysis and	l to classify principles and types	of WDM.
		Course Content(S	Syllabus)	
		<u>UNIT I</u>		
PART	· A. Overview of	ontical fiber communicat	tion – Historical development	The genera

PART A: Overview of optical fiber communication – Historical development, The general system, advantages of optical fiber communications. Optical fiber wave guides- Introduction, Ray theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays, Cylindrical fibers- Modes, V-number, Mode coupling, Step Index fibers, Graded Index fibers, Single mode fibers- Cut off wavelength, Mode Field Diameter, Effective Refractive Index, Related problems.

PART B: Fiber materials– Glass, Halide, Active glass, Chalgenide glass, Plastic optical fibers. **Fiber losses**-Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses

<u>UNIT II</u>

PART A: Signal distortion in optical fibers - Information capacity determination, Group delay, Types of Dispersion-Material dispersion, Wave-guide dispersion, Polarization-Mode dispersion, Intermodal dispersion, related problems.

PART B: Optical fiber Connectors-Connector types, Single mode fiber connectors, Connector return loss, **Fiber Splicing**- Splicing techniques, Splicing single mode fibers, **Fiber alignment and joint loss**- Multimode fiber joints, single mode fiber joints.

UNIT III

PART A: Optical sources - LEDs, Structures, Materials, Internal and External Quantum efficiency, Modulation, Power bandwidth product. **Laser Diodes**- Fabry perot resonator cavity Laser diode, Distributed feedback (DFB) Laser diode, Reliability of LED & ILD

PART B: Optical detectors - Physical principles of PIN and APD, Comparison of Photo detectors. Photo detector Noise, related problems **Optical receiver operation**- Digital signal transmission through optical data link, error sources in optical pulse detection mechanism, Receiver configuration, Digital receiver performance

<u>UNIT IV</u>

PART A: Source to fiber power launching – Source Output pattern, Power coupling calculations, Power launching versus wavelength, Equilibrium Numerical Aperture, Lansing schemes for coupling improvement, Measurement of Attenuation and Dispersion in optical fibers, Eye pattern.

PART B: Optical system design – Point-to- point links- Component choice and considerations, Link power budget with examples, Rise time budget with examples, Line coding in Optical links, Wavelength Division Multiplexing

TEXT BOOKS:

1. Optical Fiber Communications – Gerd Keiser, Mc Graw-Hill International edition, 3rd Edition, 2000.

2. Optical Fiber Communications – John M. Senior, PHI, 2nd Edition, 2002.

REFERENCES:

1. Fiber Optic Communications: D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Pearson Education, 2005.

2. Optical Fiber Communication and its Applications – S.C.Gupta, PHI, 2005.

3. Fiber Optic Communication Systems – Govind P. Agarwal, John Wiley, 3rd Edition, 2004.

4. Fiber Optic Communications - Joseph C. Palais, 4th Edition, Pearson Education, 2004.

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	3	-	-	-	-	-	-	2	-	-	3	-	-
CO2	-	2	3	-	-	3	-	-	-	-	2	-	-	3
CO3	3	-	3	-	3	-	3	-	-	3	-	-	-	-
CO4	-	2	-	-	2	-	-	-	-	-	-	3	-	2
CO5	-	-	2	3	-	-	-	2	-	-	-	-	3	-
CO6	2	-	2	3	-	-	-	-	-	2	-	-	-	-

L T P C 3 1 0 4

DIGITAL IMAGE PROCESSING

Lectu	re – Tutorial:	3-1 Hours	Internal Marks:	40
Credi	ts:	4	External Marks:	60
		ics I & II, Engineering Physics, Linea	r integrated circuits, Sig	nals and
		unications, Digital Signal Processing.		
	e Objectives:			
		oncepts of image processing and basic	c analytical methods to t	be used in
-	e processing. To fomiliarize stud	ante with image enhancement		
		ents with image enhancement. ent image restoration techniques.		
		oncepts of colour image processing.		
		students with image compression tech	niques	
		logical processing and segmentation te	-	
	e Outcomes:	logical processing and segmentation te	chinques.	
		tion of the course, the student will b	e able to:	
CO1		indamentals of image processing, nec		T and its
	properties, DCT.		,,	
CO2	1 1	es for image enhancement.		
CO3	-	adation of an image and apply appropriate	riate restoration techniqu	
CO4				
004		eed for colour image processing and	learn the fundamentals	of colour
005	image processing	•	1.00	
CO5		eed for image compression and learn	different techniques to	compress
	image.			
CO6	Interpret morphol image.	logical processing and implement di	fferent techniques to se	gment an
		Course Content(Syllabus)		
		<u>UNIT I</u>		
image Repre	e processing, composenting digital ima	Introduction to digital image process onents of an image processing system ages, Some basic relationships betwe in digital image processing.	n, Image sensing and ac	quisition,
PART	B: Image transfo	orms and Intensity transformations	: Need for transforms.	DFT with
	0	ariables, Properties of 2D Discrete F	,	
		ntensity transformations and spatial		
		, Histogram processing.		inconsity
liunoi		, motogram proceeding.		
		<u>UNIT II</u>		
PART	A: Filtering in	spatial and frequency domain: F	Fundamentals of spatial	filtering,
smoo	thing spatial filter	s, sharpening spatial filters Image s	smoothing and sharpent	ing using
freque	ency domain filters	, Selective filtering in frequency doma	in filters.	
Resto	ration in the pres	oration: A model of the image de ence of noise only Spatial Filtering ering, Linear, Position –Invariant	g, Periodic Noise Redu	uction by

degradation function, Inverse filtering, Minimum mean square error(Wiener) filtering.

UNIT III

PART A: Color image processing: Color fundamentals, color models, pseudo color image processing, basics of full color image processing, color transformations, smoothing and sharpening. Image segmentation based on color.

PART B: Image compression: Fundamentals, Basic compression methods: Huffman coding, Arithmetic coding, LZW coding, Run-Length coding, symbol based coding, Predictive coding, Wavelet coding, color image compression.

<u>UNIT IV</u>

PART A: Morphological Image Processing: Preliminaries, Erosion and dilation, opening and closing, The Hit or miss transformation, Some basic morphological algorithms, Gray scale morphology, Some basic gray scale morphological algorithms.

PART B: Image segmentation: Fundamentals, point, line, edge detection, Basic edge detection, thresholding, region –based segmentation.

TEXT BOOKS:

 R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd edition, Prentice Hall, 2008.
 Jayaraman, S. Esakkirajan, and T. Veerakumar," Digital Image Processing", Tata McGraw-Hill Education, 2011.

REFERENCES:

1. Anil K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 9th Edition, Indian Reprint, 2002.

2. B.Chanda, D.Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2009.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)														
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	02	
C01	3	2	-	-	-	-	3	-	-	-	-	-	-	-	
CO2	3	2	-	2	2	-	-	-	-	-	-	-	-	3	
CO3	-	3	2	-	-	3	-	-	-	-	-	-	3	-	
CO4	3	2	-	3	-	-	-	3	1	-	-	-	-	-	
CO5	-	3	2	-	-	-	-	-	-	2	-	-	3	-	
CO6	-	2	-	3	2	-	-	-	-	3	-	-	-	-	

LTPC

3 0 0 3

PROFESSIONAL ELECTIVE – III SATELLITE COMMUNICATIONS & RADAR ENGINEERING

Lecture	- Tutorial:	3-0 Hours	Internal Marks:	40
Credits		3	External Marks:	60
Prerequ	isites: Digital Con	munication, Cellular mobile Commun	nication, Optical commun	nication,
Signals	and Systems, Ana	log Communications, Electromagnet	ic Theory, Antennas an	d Wave
Propaga	tion.			
Course	Objectives:			
		asic concepts, applications, frequence	eies used and types of	satellite
	mmunications.			
		tellite subsystems and their functionali		
		e concepts of satellite link design and		60
		cepts of satellite navigation, architectu		PS.
	0 0	bout the basics of RADAR and its para		
		nt types of Radars and their application	18.	
	Outcomes:		11 /	
-		on of the course, the student will be a		
CO1		concepts of satellite communication aunching vehicles.	ons and to analyze the	e orbital
CO2		lge about various satellite subsystems	and basic transmission th	eory.
CO3	-	basic concepts of satellite uplink and		-
		satellite navigation and Global positio	Ũ	5
CO4	Acquire the know	wledge of Radar system to apply and	o design required param	eters for
	a RADAR system	n and to derive the RADAR Equation.		
CO5	Analyze the wo	orking principle of CW and Frequen	ncy Modulated Radar a	nd their
CO6		nt types of tracking RADARs and to plays	study different types of	of Radar
		Course Content(Syllabus)		
		<u>UNIT I</u>		
PART A	A: Introduction: F	asic Concepts of Satellite Communic	ations. Frequency allocat	tions for

PART A: Introduction: Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.

PART B: Orbital Mechanics And Launchers: Orbital Mechanics, Look Angle determination, Orbital perturbations, Orbit determination, launches and launch vehicles, Orbital effects in communication systems performance.

UNIT II

PART A: Satellite Subsystems: Attitude and orbit control system, telemetry, tracking, Command and Monitoring, power systems, communication subsystems, Satellite antenna Equipment reliability and Space Qualification.

PART B: Satellite Link Design: Basic transmission theory, system noise temperature and G/T ratio, Design of down links, up link design, Design of satellite links for specified C/N. **Satellite Navigation and Global positioning system-** Radio and Satellite Navigation, GPS Position Location principles, GPS Receivers and codes, GPS Navigation Message, GPS signal levels, GPS receiver operation, Differential GPS.

UNIT III

PART A: Introduction to Radar: Introduction, Maximum Unambiguous Range, simple Radar range Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications, Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Illustrative Problems.

PART B: CW and Frequency Modulated Radar: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar, FM-CW Altimeter, Illustrative Problems.

<u>UNIT IV</u>

PART A: Introduction to MTI Radar: Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, **Tracking with Radar**- Sequential Lobing, Conical Scan, Mono pulse Tracking Radar – Amplitude Comparison Mono pulse (one- and two-coordinates).

PART B: Radar Receivers: Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers.

TEXT BOOKS:

- 1.Satellite Communications Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2nd Edition, 2003.
- 2. Satellite Communications Engineering Wilbur L. Pritchard, Robert A Nelson and Henri G. Suyderhoud, 2nd Edition, Pearson Publications, 2003.
- 3. Introduction to Radar Systems Merrill I. Skolnik, TMH Special Indian Edition, 2nd Ed., 2007.

4. Radar Engineering and fundamentals of Navigational Aids-G.S.N.Raju,I.K International, 2008.

REFERENCES:

1. Satellite Communications: Design Principles – M. Richharia, BS Publications, 2nd Edition, 2003.

- 2. Satellite Communications Dennis Roddy, McGraw Hill, 2nd Edition, 1996.
- 3. Satellite Communication D.C. Agarwal, Khanna Publications, 5th edition.
- 4. J.C.Toomay, Paul J. Hannen "Principles of Radar", PHI Learning.
- 5. Radar: Principles, Technology, Applications Byron Edde, Pearson Education, 2004.
- 6. Radar Principles Peebles, Jr., P.Z., Wiley, New York, 1998.

· ·	,,= -) -											
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
C01	3	2	-	-	3	-	-	-	-	-	-	-	2	-
CO2	-	3	2	-	-	2	-	-	-	-	-	-	-	-
CO3	3	2	-	3	-	-	-	-	3	-	-	2	-	2
CO4	-	3	-	2	-	-	-	-	-	-	2	-	-	2
CO5	3	2	3	-	-	-	-	-	-	-	-	2	-	-
CO6	2	3	-	-	-	-	2	-	-	-	-	-	-	3

PROFESSIONAL ELECTIVE - III

DATABASE MANAGEMENT SYSTEMS

edits	– Tutorial:	3-0 Hours		40
		3	External Marks:	
	isites: Fundame	ental knowledge on C, C++	-, SQL and basic functions	of databas
stems.				
	Objectives:			
		es of systematically designing	g and using large scale Databa	ase
		ns for various applications.		
		y processing and techniques in	1 1 1	1.
	1	rinciples of storage structure a	• •	
		oncepts of transaction manage	ment and concurrency contro	l.
	se Outcomes:			. .
_		mpletion of the course		ole to:
CO1		nal database and object-orien		
CO2		and manipulate a relational da		
CO3		lel and normalization for data		• /
CO4	solutions.	in data storage and query p	rocessing and can formulate	e appropriate
C05		role and issues in managem	ant of data such as official	nou neivoor
05		responsibility, and strategi		ncy, privacy
~ ~~	security, ethical	responsibility, and strategi	c auvaniaye.	
CO6	Design and build	database system for a given r	eal world problem	
What i PART	A: An Overview s Database-Why D B: Database syst	database system for a given r UNIT I of Database Management: Database- Data Independence- cem architecture, Introduction	Introduction- What is Data Relation Systems and Others on: The Three Levels of Arc	- Summary.
PART What i PART Extern	A: An Overview s Database-Why D B: Database syst al Level- the Conc	UNIT I of Database Management: Database- Data Independence- cem architecture, Introduction eptual Level- the Internal Levent Systems- Client/Server Arc	Introduction- What is Data Relation Systems and Others on: The Three Levels of Arc. rel- Mapping- the Database A	- Summary.
PART What i PART Extern The Da	A: An Overview s Database-Why D B: Database syst al Level- the Conc atabase Manageme	UNIT I of Database Management: Database- Data Independence- cem architecture, Introduction eptual Level- the Internal Levent Systems- Client/Server Arco UNIT II	Introduction- What is Data Relation Systems and Others on: The Three Levels of Arc rel- Mapping- the Database A chitecture.	- Summary. hitecture-Th dministrator
PART What i PART Extern The Da PART Datab Sets-F Relatio	A: An Overview s Database-Why D B: Database syst al Level- the Conc atabase Manageme A: The E/R Mo ase Design, Da Relationship and onal Model Integ B: Key Constr	UNIT I of Database Management: Database- Data Independence- cem architecture, Introduction eptual Level- the Internal Levent Systems- Client/Server Arcon UNIT II odels: The Relational Mode tabase Design and Er Dia Relationship Sets-Concep rity Constraints Over Relation raints: Foreign Key Const	Introduction- What is Data Relation Systems and Others on: The Three Levels of Arc rel- Mapping- the Database A chitecture. el, Relational Calculus, Int agrams-Entities Attributes otual Design With the Er M ons. raints-General Constraints	- Summary. hitecture-Th dministrator roduction to , and Entit Models, The s, Relationa
PART What i PART Extern The Da PART Datab Sets-F Relatio Algebu Renar	A: An Overview s Database-Why D B: Database syst al Level- the Conc atabase Manageme A: The E/R Mo ase Design, Da Relationship and onal Model Integ B: Key Constr ra and Calculus, ning – Joins- D	UNIT I of Database Management: Database- Data Independence- cem architecture, Introduction eptual Level- the Internal Levent Systems- Client/Server Arcon UNIT II odels: The Relational Mode tabase Design and Er Dia Relationship Sets-Concep rity Constraints Over Relation raints: Foreign Key Const Relational Algebra- Selection ivision- More Examples of comain Relational Calculus.	Introduction- What is Data Relation Systems and Others on: The Three Levels of Arc rel- Mapping- the Database A chitecture. el, Relational Calculus, Int agrams-Entities Attributes otual Design With the Er N ons. raints-General Constraints on and Projection- Set Ope	- Summary. hitecture-Th dministrator roduction to , and Entity Models, The s, Relationa eration,
PART What i PART Extern The Da PART Datab Sets-F Relatio Renar Relatio PART Interso	A: An Overview s Database-Why D B: Database syst al Level- the Conc atabase Manageme A: The E/R Mo ase Design, Da Relationship and onal Model Integ B: Key Constr ra and Calculus, ning – Joins- D onal Calculus- Do A: Queries, Co ect, and Except,	UNIT I of Database Management: Database- Data Independence- cem architecture, Introduction eptual Level- the Internal Levent Systems- Client/Server Arcon UNIT II odels: The Relational Model tabase Design and Er Dia Relationship Sets-Concep rity Constraints Over Relation raints: Foreign Key Const Relational Algebra- Selection ivision- More Examples of	Introduction- What is Data Relation Systems and Others on: The Three Levels of Arc rel- Mapping- the Database A chitecture. el, Relational Calculus, Int agrams-Entities Attributes otual Design With the Er N ons. raints-General Constraints on and Projection- Set Ope f Queries, Relational Calc Form of Basic SQL Qu ate Operators, Null Value	- Summary. hitecture-The dministrator roduction to , and Entity Models, The s, Relationa eration, culus, Tuple

inconsistent retrievals and the Scheduler.

UNIT IV

PART A: Concurrency control with locking methods : lock granularity, lock types, two phase Locking for ensuring serializability, deadlocks, Concurrency control with time stamp ordering: Wait/Die and Wound/Wait Schemes, Database Recovery management: Transaction recovery.

PART B: Overview of Storages and Indexing: Data on External Storage- File Organization and Indexing –Clustered Indexing – Primary and Secondary Indexes, Index Data Structures, Hash-Based Indexing – Tree-Based Indexing, Comparison of File Organization.

TEXT BOOKS:

1. Introduction to Database Systems, CJ Date, Pearson.

2. Data base Management Systems, Raghurama Krishnan, Johannes Gherkin, TATA McGraw

Hill 3rd Edition

3. Database Systems - The Complete Book, H G Molina, J D Ullman, J Widom Pearson **REFERENCE BOOKS:**

1. Data base Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.

2. Fundamentals of Database Systems, Elmasri Navrate Pearson Education.

3. Introduction to Database Systems, C.J.Date Pearson Education.

(
	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	-	-	-	-	-	-	-	-	2	-	-	-	-
CO2	2	3	-	-	2	-	-	-	-	-	3	-	-	-
CO3	-	-	3	-	2	-	-	-	3	-	-	-	3	-
CO4	3	-	3	-	-	-	-	2	-	-	-	-	2	-
CO5	3	-	2	-	-	2	-	-	-	-	-	-	-	-
CO6	-	-	3	-	-	-	-	-	-	-	-	2	-	-

PROFESSIONAL ELECTIVE - III

EMBEDDED SYSTEM DESIGN

Lecture	– Tutorial:	3-0 Hours	Internal Marks:	40
Credits:		3	External Marks:	60
rerequis	sites: Operating Sys	tems, Microcontrollers, C Program	ming.	
Course (Objectives:			
• Provi	ide in-depth knowle	edge about embedded systems eml	bedded processors, and its	hardwar
and soft	ware.			
Ex	plain design metric	s or challenges in designing an emb	bedded system.	
• Ex	plain real time ope	erating systems, inter task commu	nication and an embedded	softwar
develop	ment tools.			
Course (Outcomes:			
Upon su	ccessful completion	n of the course, the student will b	e able to:	
CO1	also recognize th	rences between general computing ne classification of embedded systemunication interfaces.		
CO2	Understand design	n approaches of embedded hardwar	e and firmware.	
CO3	Know about R' multiprocessing.	TOS, RTOS principles, kernel,	tasks, threads, multitask	king an
CO4	Understand kerned dead lock, and live	el objects; inter task communicative lock.	ion-pipes, signals, message	e queue
CO5		software development tools, unde	erstand unique design prob	lems an
~~ .	challenges of rea			
CO6	Understand ARM	processor architecture and register		
		Course Content(Syllabus))	
		UNIT I		1.0. (
		ON TO EMBEDDED SYSTEM General Computing Systems,		
	-	lication Areas, Purpose of Embe		-
	Attributes of Embe	· •	deed bystems, characteri	sties un
		EDDED SYSTEM : Core of the l	Embedded System: General	l Purpos
		ssors, ASICs, PLDs, Commercial		
		nsors and Actuators, Communicati		
Commu	nication Interfaces.			
		<u>UNIT II</u>		
		ARDWARE DESIGN: Analog an and counting devices, Watchdog times and counting devices.	•	nents, I/O
PART 1	B: EMBEDDED	FIRMWARE DESIGN: Embed	lded Firmware design ap	
Empedd	eo rirmware deve	IODIDEDI INDUNGES LNK CONCEDE	merrupi sources Conce	DIS OT

Embedded Firmware development languages, ISR concept, Interrupt sources, Concepts of C versus Embedded C and Compiler versus Cross-compiler.

UNIT III

PART A: REAL TIME OPERATING SYSTEM: Operating system basics, Types of operating systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling, Task communication, Task synchronisation.

PART B: HARDWARE SOFTWARE CO-DESIGN: Fundamental Issues in Hardware Software Co-Design, Computational models in embedded design, Hardware software Trade-offs.

<u>UNIT IV</u>

PART A: Embedded System Development And Testing: The integrated development environment, Types of files generated on cross-compilation, Simulators, Emulators and Debugging, Target hardware debugging, testing on host machine, Embedded Software development process.

PART B: Advanced RISC Machine: Features of ARM, Architecture of ARM, Modes of ARM, Register Organization of ARM, CPSR, Instruction set, Exception handling in ARM, ARM Families.

TEXT BOOKS:

1. Embedded Systems Architecture- By Tammy Noergaard, Elsevier Publications, 2013.

2. Embedded Systems-By Shibu.K.V-Tata McGraw Hill Education Private Limited, 2013.

3. Embedded Systems-By Shibu.K.V-Tata McGraw Hill Education Private Limited, 2013.

4.ARM System on Chip Architecture – Steve Furber –2nd Eed., 2000, Addison Wesley

Professional

REFERENCES:

Embedded System Design, Frank Vahid, Tony Givargis, John Wiley Publications, 2013.
 Embedded Systems-Lila Beda's-Pearson Publications, 2013

SWAYAM/NPTEL/MOOCS Courses

1. https://nptel.ac.in/courses/108/102/108102045/

2. https://nptel.ac.in/courses/106105193/

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	2	3	-	-	-	-	-	-	-	2	-	-	3	-
CO2	-	-	3	-	2	-	-	3	-	-	-	-	-	3
CO3	2	-	-	3	3	-	1	-	-	-	-	3	-	-
CO4	-	2	2	-	-	-	-	-	-	-	-	-	3	2
CO5	3	-	-	-	-	2	-	-	-	-	-	-	3	-
CO6	-	3	-	2	2	-	-	-	2	-	-	-		-

PROFESSIONAL ELECTIVE-IV DATA COMMUNICATIONS

Prerequisites: Analog Communication, Digital Communication. Course Objectives: To learn about basics of Data Communication networks, different protocols, standards and layering concepts. To know circuits for serial and parallel Data transmission. To study about error detection and correction techniques. To describe character synchronization and explain the differences between asynchronous and ynchronous data formats. To understand Data-Link Protocols and Data Communications Networks, Define and describe the Congestion Control and Quality of Service in Data communication raffic control. Course Outcomes: Upon successful completion of the course, the student will be able to: CO1 Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous data formats.	Lecture	– Tutorial:	3-0 Hours	Internal M	arks:	40
Course Objectives: To learn about basics of Data Communication networks, different protocols, standards and layering concepts. To know circuits for serial and parallel Data transmission. To study about error detection and correction techniques. To describe character synchronization and explain the differences between asynchronous and synchronous data formats. To understand Data-Link Protocols and Data Communications Networks, Define and describe the Congestion Control and Quality of Service in Data communication raffic control. Course Outcomes: Upon successful completion of the course, the student will be able to: CO1 Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats.	Credits:		3	External M	larks:	60
 To learn about basics of Data Communication networks, different protocols, standards and layering concepts. To know circuits for serial and parallel Data transmission. To study about error detection and correction techniques. To describe character synchronization and explain the differences between asynchronous and synchronous data formats. To understand Data-Link Protocols and Data Communications Networks, Define and describe the Congestion Control and Quality of Service in Data communication raffic control. Course Outcomes: Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous data formats. 	Prerequ	isites: Analog Com	munication, Digital Comm	unication.		
 and layering concepts. To know circuits for serial and parallel Data transmission. To study about error detection and correction techniques. To describe character synchronization and explain the differences between asynchronous and ynchronous data formats. To understand Data-Link Protocols and Data Communications Networks, Define and describe the Congestion Control and Quality of Service in Data communication raffic control. Course Outcomes: Upon successful completion of the course, the student will be able to: CO1 Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous data formats. 	Course	Objectives:				
 To know circuits for serial and parallel Data transmission. To study about error detection and correction techniques. To describe character synchronization and explain the differences between asynchronous and ynchronous data formats. To understand Data-Link Protocols and Data Communications Networks, Define and describe the Congestion Control and Quality of Service in Data communication raffic control. Course Outcomes: Upon successful completion of the course, the student will be able to: Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats. 	• To	learn about basics	of Data Communication n	etworks, different protoco	ols, standar	ds
 To study about error detection and correction techniques. To describe character synchronization and explain the differences between asynchronous and ynchronous data formats. To understand Data-Link Protocols and Data Communications Networks, Define and describe the Congestion Control and Quality of Service in Data communication raffic control. Course Outcomes: Upon successful completion of the course, the student will be able to: CO1 Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats. 	and layer	ring concepts.				
 To describe character synchronization and explain the differences between asynchronous and ynchronous data formats. To understand Data-Link Protocols and Data Communications Networks, Define and describe the Congestion Control and Quality of Service in Data communication raffic control. Course Outcomes: Upon successful completion of the course, the student will be able to: CO1 Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats. 	• To	know circuits for s	erial and parallel Data trar	smission.		
 ynchronous data formats. To understand Data-Link Protocols and Data Communications Networks, Define and describe the Congestion Control and Quality of Service in Data communication raffic control. Course Outcomes: Upon successful completion of the course, the student will be able to: CO1 Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats. 	• To	study about error d	letection and correction tec	hniques.		
 Define and describe the Congestion Control and Quality of Service in Data communication raffic control. Course Outcomes: Upon successful completion of the course, the student will be able to: CO1 Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats. 			synchronization and expla	in the differences betwee	en asynchro	onous and
 raffic control. Course Outcomes: Upon successful completion of the course, the student will be able to: Understand the concepts of Data Communication networks, different protocols, Standards and layering. CO2 Analyze open systems interconnection model and various Data Communication circuits. CO3 Explore the error investigation techniques in data transmission process. CO4 Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats. 	• To	understand Data-L	ink Protocols and Data Co	mmunications Networks,		
Course Outcomes:Upon successful completion of the course, the student will be able to:CO1Understand the concepts of Data Communication networks, different protocols, Standards and layering.CO2Analyze open systems interconnection model and various Data Communication circuits.CO3Explore the error investigation techniques in data transmission process.CO4Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats.			Congestion Control and	Quality of Service in D	Data comm	unication
Upon successful completion of the course, the student will be able to:CO1Understand the concepts of Data Communication networks, different protocols, Standards and layering.CO2Analyze open systems interconnection model and various Data Communication circuits.CO3Explore the error investigation techniques in data transmission process.CO4Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats.						
 Understand the concepts of Data Communication networks, different protocols, Standards and layering. Analyze open systems interconnection model and various Data Communication circuits. Explore the error investigation techniques in data transmission process. Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats. 						
Standards and layering.CO2Analyze open systems interconnection model and various Data Communication circuits.CO3Explore the error investigation techniques in data transmission process.CO4Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats.	-	-				
 Analyze open systems interconnection model and various Data Communication circuits. Explore the error investigation techniques in data transmission process. Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats. 	COI		-	munication networks, o	different	protocols,
 Explore the error investigation techniques in data transmission process. Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats. 		Standards and lay	ering.			
CO4 Demonstrate the character synchronization and explain the differences between asynchronous and synchronous data formats.	CO2	Analyze open sys	tems interconnection mode	el and various Data Comr	nunication	circuits.
asynchronous and synchronous data formats.	CO3	Explore the error	investigation techniques ir	data transmission proces	ss.	
CO5 Analyze different Data-Link Protocols and Data Communications Networks	CO4				ifferences	between
That ye unterent Data-Enk Trotocols and Data Communications Networks.	CO5	Analyze different	Data-Link Protocols and I	Data Communications Ne	tworks.	
5	CO6	Elaborate the Con		-	ic control.	
Course Content(Syllabus)				yllabus)		
<u>UNIT I</u>			<u>UNIT I</u>			

Data Communications and Networking:

Part-A: Introduction, Data Communications Network Architecture, Data Communications Protocols, and Standards, Layered Network Architecture, Protocol data unit.

Part-B: Open Systems Interconnection, Data Communications Circuits, Serial and Parallel Data Transmission, Data Communications Circuit Arrangements, Circuit configurations, Transmission modes, Data Communications Networks, components, functions, features, network models.

<u>UNIT II</u>

Fundamental Concepts of Data Communications:

Part-A: Introduction, Error Control, Error Detection, redundancy checking, Error Correction, retransmission, Forward error correction, hamming code, examples.

Part-B: Character Synchronization, Asynchronous serial data, synchronous serial data, Data Communications Circuits, Data Communications Modems, block diagram, modem classifications,

Asynchronous and synchronous voice band modems.

UNIT III

Data-Link Protocols and Data Communications Networks

Part-A: Introduction, Data-Link Protocol Functions, Line discipline, flow control, error control, Character- and Bit-Oriented Data-Link Protocols, Asynchronous Data-Link Protocols, X-modem, Y-modem Synchronous Data-Link Protocols, binary synchronous communications.

Part-B: Synchronous Data-Link Control, Frame format, loop operation, message abort, Invert on zero encoding, High-Level Data-Link Control, subdivisions, information field, elements of procedure.

UNIT IV

Congestion Control and Quality of Service (QoS)

Part-A: Data traffic, congestion, congestion control-open loop and closed loop, congestion control in TCP and congestion control in frame relay.

Part-B: Flow Characterization, Flow Classes, Need For QoS, Techniques to improve QoS, scheduling, traffic shaping, resource reservation and admission control, integrated and differentiated Services.

TEXT BOOKS:

1. Advanced Electronic Communication Systems – W.Tomasi, 6th ed. 2014, PEI.

2. Data Communications and Networking – B.A.Forouzan, 4th ed.2008, TMH.

3. Data Communications and Computer Nerworks – Prakash C.Gupta, 2006, PHI.

REFERENCES:

1 Data and Computer Communications - William Stallings, 8th ed.2007, PHI

2. Computer Networks by Andrew S. Tanenbaum

	,		/	0 /										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	-	2	-	-	-	-	-	-	-	-	2	-	-
CO2	-	3	3	-	-	-	2	2	-	-	-	-	-	-
CO3	2	3	-	3	-	-	-	-	-	-	-	-	-	3
CO4	2	-	3	-	-	-	-	-	-	-	2	-	-	2
CO5	-	3	2	-	-	2	-	2	-	-	-	-	3	
CO6	3	2	2		-	-	-	-	-	-	-	-	-	3

PROFESSIONAL ELECTIVE-IV OPERATING SYSTEMS

Lecture	– Tutorial:	3-0 Hours	Internal Marks:	40
Credits:		3	External Marks:	60
Prerequ	isites: Basic Hardv	vare and Software concept	s of Computer Systems and Organ	nization.
Course	Objectives:			
 St 	udy the basic cor	ncepts and functions of o	operating systems.	
• Ui	nderstand the stru	ucture and functions of C	DS.	
• Le	earn about Proces	sses, Threads and Sche	duling algorithms.	
• Ui	nderstand the prir	nciples of concurrency a	nd Deadlocks.	
• Le	earn various mem	ory management schen	nes.	
Course (Outcomes:			
Upon su	ccessful completion	on of the course, the stude	ent will be able to:	
CO1	Design various	Scheduling algorithms.		
CO2	Apply the princ	ciples of concurrency.		
CO3	Design deadlo	ck, prevention and avoid	lance algorithms.	
CO4	Compare and	contrast various memory	y management schemes.	
CO5	Design and Im	plement a prototype file	systems.	
CO6	Perform admin	istrative tasks on Serve	rs.	
		Course Content(Syllabu	s)	
		UNIT	[

PART A: Introduction to Operating System Concept: Types of operating systems, operating systems Concepts, operating systems services, Introduction to System call, System call types.

PART B: Process Management – Process concept, The process, Process State Diagram , Process control block, Process Scheduling- Scheduling Queues, Schedulers, Operations on Processes,

Interprocess Communication, Threading Issues, Scheduling-Basic Concepts, Scheduling Criteria,

Scheduling Algorithms.

<u>UNIT II</u>

PART A: Memory Management: Swapping, Contiguous Memory Allocation, Paging, structure of the Page Table, Segmentation.

PART B: Virtual Memory Management:

Virtual Memory, Demand Paging, Page-Replacement Algorithms, Thrashing.

UNIT III

PART A: Concurrency: Process Synchronization, The Critical- Section Problem, Synchronization Hardware, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization Examples.

PART B: Principles of deadlock – System Model, Deadlock Characterization, Deadlock Prevention,

Detection and Avoidance, Recovery form Deadlock

<u>UNIT IV</u>

PART A: File system Interface- the concept of a file, Access Methods, Directory structure, File system mounting, file sharing, protection.

PART B: File System implementation- File system structure, allocation methods, free-space management

Mass-storage structure overview of Mass-storage structure, Disk scheduling, Device drivers.

TEXT BOOKS:

1.Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin and Greg Gagne 9th Edition, John Wiley and Sons Inc., 2012.

2. Operating Systems – Internals and Design Principles, William Stallings, 7th Edition, Prentice Hall, 2011.

3. Operating Systems-S Halder, Alex A Aravind Pearson Education Second Edition 2016.

REFERENCES:

1. Modern Operating Systems, Andrew S. Tanenbaum, Second Edition, Addison Wesley, 2001.

2. Operating Systems: A Design-Oriented Approach, Charles Crowley, Tata Mc Graw Hill Education", 1996.

3. Operating Systems: A Concept-Based Approach, D M Dhamdhere, Second Edition, Tata Mc Graw-Hill Education, 2007.

	Contribution of Course Outcomes towards achievement of Program Outcomes (1 – Low, 2- Medium, 3 – High)													
PO P													PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO2	-	3	2	-	-	2	-	-	-	-	-	-	-	2
CO3	2	-	-	3	-	-	-	-	-	-	-	2	-	-
CO4	-	2	-	2	-3	-	-	-	-	-	-	-	-	-
CO5	2	-	3	-	-	-	-	-	-	-	-	2	3	-
CO6	-	3	2	-	-	-	-	-	-	-	-	-	-	-

PROFESSIONAL ELECTIVE-IV ANALOG IC DESIGN

Lectur	e – Tutorial:	3-0 Hours	Internal Marks:	40
Credits	5:	3	External Marks:	60
Prereq	uisites: Electronic E	Devices and circuits, Linea	r IC Applications.	
Course	Objectives:			
Unc	lerstand the behavio	r of MOS Devices and Sm	all-Signal & Large-Signal Modelin	ng of MOS
Transis	tor and Analog Sub-	Circuits.		
Stu	dy CMOS Amplifier	rs like Differential Amplif	iers, Cascade Amplifiers, Output A	Amplifiers,
and Op	erational Amplifiers			
Des	ign and to develop t	he Analog CMOS Circuits	s for different Analog operations.	
Unc	lerstand the concept	s of Sample and Hold circ	uits and Open-Loop Comparators.	
Course	Outcomes:			
Upon s	uccessful completion	on of the course, the stud	ent will be able to:	
CO1	Understand the kr	nowledge of MOS devices	and modeling.	
CO2	Use different style	es of CMOS Circuit mode	lling to synthesize analog ICs.	
CO3	Apply appropriate	e biasing techniques to imp	prove performance of analog circui	ts.
CO4	Design and Devel	op Analog Integrated Circ	uits using MOS Transistor.	
CO5	Design and Devel	op CMOS Op Amps.		
CO6	Assess the perfor suitable for societ		old circuits and comparators in a	analog ICs
		Course Content(Syllabus	5)	
		<u>UNIT I</u>		

PART A: Basic MOS Devices: The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, Latch up in CMOS Technology, Short Channel Effects in MOS Transistors.

PART B: CMOS Device Modelling: Weak Inversion in MOS Transistors Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Subthreshold MOS Model.

UNIT II

PART A: Current Mirrors: Current Sinks and Sources, Simple Current Mirrors, Simple Current Mirror with Source Degeneration, Cascode Current Mirror and Wilson Current Mirror.

PART B: Biasing Techniques: CS Biasing, CG Biasing, Source Follower Biasing, Differential Pair Biasing.

<u>UNIT III</u>

PART A: Single Stage Amplifiers: Common Source Stage with resistive load, Source follower, Common Gate Stage, Cascode Stage.

PART B: CMOS Operational Amplifiers: Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

<u>UNIT IV</u>

PART A: Sample and Hold Circuits:

Performance of Sample and Hold Circuits, MOS Sample and Hold Basics, Examples of CMOS S/H circuits, Bipolar and BICMOS Sample and Hold circuits.

PART B:Comparators:

Using an Opamp for a Comparator, Charge-Injection Errors, Latched Comparators, Examples of CMOS and BiCMOS Comparators.

TEXT BOOKS:

1. Design of Analog CMOS Integrated Circuits, Behzad Razavi, Tata McGraw Hill, 2nd Edition, 2008.

2.Analog Integrated Circuit Design- David A.Johns, Ken Martin, Wiley Student Edn, 2013. **REFERENCES:**

1. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.

2.CMOS Analog Circuit Design - Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.

Contribution of Course Outcomes towards achievement of Program Outcomes
(1 – Low, 2- Medium, 3 – High)

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
C01	3	-	-	-	2	-	-	2	-	-	-	-	3	-
CO2	-	-	2	-	3	-	3	-	-	-	-	3	-	3
CO3	3	3	-	-	-	-	-	-	-	-	2	-	2	-
CO4	-	-	3	3	-	-	-	-	3	-	-	-	-	-
CO5	-	2	-	-	3	-	-	-	-	2	-	-	-	-
CO6	3	2	-	-	-	3	-	-	-	-	-	3	-	-

MANDATORY COURSE INDIAN CONSTITUTION

Lecture	e – Tutorial:	3-0 Hours	Internal Marks:	40
Credits	:	0	External Marks:	60
Prereq	uisites: Civics, Bas	sics of Political Science.		
Course	Objectives:			
• U	Inderstand the impo	rtance of constitution.		
	-	ture of executive, legislature an	d judiciary.	
		hy of fundamental rights and du		
		al and state relations, financial		
	Outcomes:	······································		
Upon s	uccessful completi	on of the course, the student v	vill be able to:	
CO1			aracteristics of Indian Constitution	on.
CO2		. .	and Principles and importance	
	Policy.	_		
CO3	Understand the po	wers of Union, the States and In	ndian President.	
CO4	Know about amen	dments of the constitution and I	Emergency Provisions.	
CO5	Understand the fu	nctioning of three wings of the	e government i.e., executive, le	egislative
	and judiciary.			
CO6	•	I	entral, state and local self-govern	nment.
		Course Content(Syllabus)		
		<u>UNIT I</u>		
			alism, Historical perspectiv stics of the constitution of In	
		<u>UNIT II</u>		
Scheme	of the fundamen	tal Right to Equality, Schem	scheme of the fundamenta ne of the fundamental Right f nd personal Liberty under Ar	to certai
Federal	structure and dis	stribution of legislative and	financial powers between th	ie union
			n India-the constitution pow	
			onstitutional powers and pro	
			amendments in India, Lo	ical sel
governn	lent-Constitution	al Scheme in India.		
[]	or Drominian M	<u>UNIT IV</u>	t Dulo Einonoiol Engeneration	
Statuto	ry Institutions:	Elections-Election Commiss	t Rule, Financial Emergency sion of India, National Huma	
Commis	,	mmission for Women.		
IEAI B	UURS:			
		ial, 1950 (Bare Act), Govern R. Ambedkar, <i>—Framing of Ir</i>	ment Publication. Idian Constitution , 1st Editio	on,
2015.	·		· · · ·	
	ENCES:			

M. P. Jain, *—Indian Constitution Law*, 7th Edition., Lexis Nexis, 2014.
 D.D. Basu, *—Introduction to the Constitution of India*, Lexis Nexis, 2015.
 SubhashKashyap, Our Parliament, National Book Trust, New Delhi

4. Peu Ghosh, Indian Government &Politics, Prentice Hall of India, New Delhi

5. B.Z. Fadia&KuldeepFadia, Indian Government &Politics, Lexis Nexis, New Delhi

Cont	ributio	n of Cou	irse Ou	itcome	s towar	ds ach	ieveme	nt of P	rogran	o Outco	omes			
	(1 – Low, 2- Medium, 3 – High)													
PO PO<												PS		
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
C01	3	2	-	-	-	3-	-	-	-	-	-	-	-	-
CO2		3	2	-	-	-	-	2	-	-	-	-	-	-
CO3	3	-	2	-	-	-	3	-	3	-	-	2	-	-
CO4	-	-	3	-	-	-	-	2	-	-	-	2	-	-
CO5		2	-	3	-	-	-	-	-	-	-	-	-	-
CO6	3	2	-	-	-	-	-	-	-	-	-		-	-

Microwave Engineering and Optical Communication lab

Minimum 10 experiments should be conducted. { 6 experiments from part A and 4 experiments from part B}

Pre-Requisites: Analog Communication and Digital Communication.

Course Outcomes: The Students will be able to

- Verify characteristics of various microwave sources by conducting experiments with microwave bench setup.
- Analyze various parameters of Waveguide Components by conducting experiments with microwave bench setup.
- Estimate the power measurements of RF Components such as directional Couplers and circulators.
- Demonstrate characteristics of various optical sources by conducting experiments.
- Analyze the characteristics of optical fiber by conducting experiments and measuring various parameters.
- To demonstrate the Working of various Microwave Devices and components through microwave bench setup.

Part-A

Microwave Communications (Any Six Experiments)

- 1. Characteristics of the Reflex Klystron Tube
- 2. Characteristics of Gunn Diode
- 3. Determination of Voltage Standing Wave Ratio (VSWR)
- 4. Waveguide Parameters Measurement
- 5. Attenuation Measurement
- 6. Characteristics of Multihole Directional Coupler
- 7. Scattering Parameters of Circulator
- 8. Scattering Parameters of Magic Tee

Part-B

Optical Communications (Any Four Experiments)

- 1. V-I Characteristics of LED
- 2. Characteristics of Laser Diode
- 3. Measurement of Numerical Aperture of Optical fiber

- 4. Measurement of Losses in Analog Optical Link
- 5. Measurement of Data Rate Using Digital Optical Link

Equipment required for Laboratories:

- 1. Klystron Power Supply
- 2. Gunn Power Supply
- 3. VSWR Meter
- 4. Reflex klystron Tube
- 5. Gunn Diode
- 6. PIN diode
- 7. Waveguide Components
- 8. Microwave Bench setup with klystron Tube
- 9. Microwave Bench setup with Gunn diode
- 10. Optical Fibre Link Setup with LED
- 11. Optical Fibre Link Setup with LASER diode
- 12. CRO 0 30 M Hz.

--00000--

AUTONOMOUS SYLLABUS IV - II

L T P C 3 0 0 3

PROFESSIONAL ELECTIVE-V WIRELESS COMMUNICATIONS AND NETWORKS

Lecture – Tutorial:	3-0 Hours	Internal Marks:	40
Credits:	3	External Marks:	60
	and Wave Propagation, Cellu		
Communication, Digital Com		ular Woolle communication,	, Analog
Course Objectives:			
• To understand the fun	actions of wireless communicati	ion system and evolution of	different
wireless communication system	stems and standards.	-	
• To be able to compare r	recent technologies used for wirel	less communication.	
• To analyze and be abl	le to explain the architecture, f	unctioning, protocols, capabil	lities and
applications of various wire	eless communication networks.		
• To understand the con	cepts and be able to explain m	ultiple access techniques for	Wireless
Communication.			
Course Outcomes:			
	on of the course, the student wil	ll be able to:	
CO1 Understand the fu	unctioning of wireless communic	cation system and evolution of	different
	ication systems and standards.		
	t technologies used for wireless c		
-	itecture, functioning, protocols, o	capabilities and application o	f various
wireless commun			
	nultiple access techniques for Wi		
CO5 Evaluate design networks.	challenges, constraints and sec	curity issues associated with	wireless
CO6 Acquire knowledg	ge about various wireless data ser	vices and their performance.	
	Course Content(Syllab	ous)	
	<u>UNIT I</u>		
PART A: Mobile Radio P	ropagation: Large-Scale Path I	Loss:	
	ave Propagation, Free Space Pr		
_	agation Mechanisms, Reflection:		
•	refect conductors, Ground Refle	· · · ·	
	Knife-edge Diffraction Mod	el, Multiple knife-edge Di	ffraction,
Scattering.			
-	agation Models- Longley-Ryce		
	Model, Indoor Propagation M		, · ·
	Floors, Log-distance path loss	model, Ericsson Multiple B	reakpoint
Model, Attenuation Factor			
DADT A.M.L.I. D. J. D	<u>UNIT II</u>	a and Multinath	
raki A: Nioblie Kadio Pi	ropagation: Small –Scale Fadin	g and Multipath	

Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters,

Coherence Bandwidth, Doppler Spread and Coherence Time.

PART B:Types of Small- Scale Fading- Fading effects Due to Multipath Time Delay Spread, Flat fading and Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, **Statistical Models for multipath Fading Channels**-Clarke"s model for flat fading,

spectral shape due to Doppler spread in Clarke"s model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

<u>UNIT III</u>

PART A: Equalization and Diversity-Introduction, Fundamentals of Equalization, Training a Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Nonlinear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer.

PART B: Algorithms for adaptive equalization-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. **Diversity** -Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, **Practical Space Diversity Consideration**-Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

<u>UNIT IV</u>

PART A: Wireless Networking.Introduction to Wireless Networks. Differences Between Wireless and Fixed Telephone Networks. Development of Wireless Networks. Fixed Network Transmission Hierarchy. Traffic Routing in Wireless Networks.

PART B: Wireless Data Services: Common Channel Signaling (CCS). Integrated Services Digital Network (ISDN). Signaling System No. 7 (SS7). Network Service part (NSP) of SS7, The SS7 user parts, Signaling Traffic in SS7, SS7 services, Performance of SS7.

TEXT BOOKS:

1 Wireless Communications, Principles, Practice – Theodore, S. Rappaport, 2nd Ed., 2002, PHI.

2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press.

3. Mobile Cellular Communication - Gottapu Sasibhushana Rao, Pearson Education, 2012.

REFERENCES:

1. Principles of Wireless Networks - KavehPahLaven and P. Krishna Murthy, 2002, PE

2. Wireless Digital Communications - KamiloFeher, 1999, PHI.

3. Wireless Communication and Networking - William Stallings, 2003, PHI.

4. Wireless Communication – UpenDalal, Oxford Univ. Press.

5. Wireless Communications and Networking – Vijay K. Gary, Elsevier.

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
C01	3	3	-	2	-	-	-	-	-	-	-	-	-	3
CO2	3	-	-	-	3	-	3	-	-	3	-	-	-	2
CO3	3	3	-	-	-	-	-	3	-	-	-	-	3	-
CO4	-	-	3	-	3	-	-	-		-	-	2	-	-
CO5	3	2	2	-	3	-	-	-	-	-	-	-	-	3
CO6	-	2	-	-	-	2	-	-	-	-	2	-	-	-

L T P C 3 0 0 3

PROFESSIONAL ELECTIVE-V SOFT COMPUTING TECHNIOUES

		SOFT COMPUTING T	LCHNIQUES		
Lecture –	Tutorial:	3-0 Hours	Inter	rnal Marks:	40
Credits:		3	Exte	rnal Marks:	60
Prerequis	ites: Electronic E	Devices and circuits, Line	ar IC Applications.		
Course O	bjectives:				
• To	provide an intro	duction to the basic pr	inciples, techniques	s, and applicatio	ns of soft
computin	g.				
• To und	lerstand the basic	areas of Soft Computin	o includino Artifici	al Neural Netwo	rks Fuzzv
	l Genetic Algorit	-	5 meruding i numer		
0	U	ematical background for	carrying out the or	timization assoc	iated with
-	twork learning.	6	5 0 1		
	0	niliarity with current res	earch problems and	d research metho	ds in Soft
Computin	ng by working on	a research or design proj	ect.		
Course O	utcomes:				
Upon suce	cessful completion	on of the course, the stu	dent will be able to	:	
CO1 (Understand huma	n intelligence and artifici	al intelligence.		
CO2	Know how intelli	gent system works.			
CO3	Apply basics of H	Fuzzy logic and neural ne	tworks.		
CO4	Analyze the fuzz	y sets, fuzzy logic and us	e of heuristics based	d on human expe	rience.
CO5	Relate with neur	al networks that can lea	rn from available e	xamples and ger	neralize to
	form appropriate	rules for inference system	ns.		
CO6	Understand gener	ic algorithms and other r	andom search proce	edures useful whi	le seeking
	global optimum i	n self-learning situations			
		Course Content	(Syllabus)		
		UNIT	I		
Part-A (In	ntroduction to S	oft Computing): What	is Soft Computing	? Difference betw	veen Hard
and Soft	computing, Re	quirement of Soft com	puting, Major Are	eas of Soft C	omputing,

Applications of Soft Computing.

Part-B: various types of soft computing techniques, Fuzzy Computing, Neural Computing Genetic Algorithms, Associative Memory, Adaptive Resonance Theory, Classification, Probabilistic reasoning.

UNIT II

Part-A (Fundamentals of Artificial Neural Network):

What is Neural Network, Learning rules and various activation functions, Single layer Perceptrons, Back Propagation networks, Architecture of Back propagation(BP) Networks, Back propagation Learning, Variation of Standard Back propagation Neural Network, Introduction to Associative Memory.

Part-B: Introduction, Model of Artificial Neuron, Architectures, Learning Methods, Deep learning, Taxonomy of ANN Systems, Single- Layer ANN System, Supervised Learning Neural Networks, Perceptrons, Adaline, Mutilayer Perceptrons Applications of ANN in research.

UNIT III

Part-A (.Fuzzy Set Theory & Fuzzy Systems) :

Fuzzy set theory, Fuzzy set versus crisp set, Crisp relation & fuzzy relations, introduction & features of membership functions, Extension Principle, Fuzzy If-Then Rules, Sugeno Fuzzy Models, Fuzzification, Defuzzification, Applications.

Part-B: (Fuzzy Logic) : Fuzzy Sets – Properties – Membership Functions – Fuzzy Operations. Fuzzy Logic and Fuzzy Inference System

UNIT IV

Part-A(Genetic Algorithms and Hybrid Systems) :

Fundamentals of Genetic Algorithms, basic concepts, working principle, encoding, fitness function, reproduction, Genetic modeling,

Part-B: Hybrid Systems: Integration of Neural Networks, Fuzzy Logic and Genetic Algorithms, Research orientation of soft computing techniques.

TEXT BOOKS:

1 J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2004.

2. Simon O. Haykin "Artificial Neural Network", PHI, 2003

3. Elaine Rich, Kevin Knight, Artificial Intelligence TMH, 2009

REFERENCES:

1 Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.

2. Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.

3. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003.

4. R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence – PC Tools", AP Professional, Boston, 1996.

5. Dan W. Patterson, Introduction to AI and Expert System, PHI, 2009.

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
C01	3	-	2	-	3	-	-	-	-	-	-	2	-	-
CO2	-	3		2	-	-	-	2	-	-	-	-	-	3
CO3	2	3	-	3	-	3	-	-	-	-	-	-	-	-
CO4	2	-	3	3	-	-	-	-	2	-	2	-	-	2
CO5	2	3	-	-	-	-	-	2	-	-	-	-	3	-
CO6	-	3	2	-	-	-	-	-	-	3	-	-	-	-

L T P C 3 0 0 3

PROFESSIONAL ELECTIVE-V DIGITAL IC DESIGN

Lecture – Tutorial:3-0 HoursInternal Marks:40Credits:3External Marks:60Prerequisites:Electronic Devices and circuits, Linear IC Applications.
Prerequisites: Electronic Devices and circuits, Linear IC Applications.
Course Objectives:
• Understand the behavior of MOS Devices and Small-Signal & Large-Signal Modeling of MOS
Transistor and Analog Sub-Circuits.
• Study CMOS Amplifiers like Differential Amplifiers, Cascade Amplifiers, Output Amplifiers,
and Operational Amplifiers.
• Design and to develop the Analog CMOS Circuits for different Analog operations.
• Understand the concepts of Sample and Hold circuits and Open-Loop Comparators.
Course Outcomes:
Upon successful completion of the course, the student will be able to:
CO1 Understand the knowledge of MOS devices and modeling.
CO2 Use different styles of CMOS Circuit odeling to synthesize analog Ics.
CO3 Apply appropriate biasing techniques to improve performance of analog circuits.
CO4 Design and Develop Analog Integrated Circuits using MOS Transistor.
CO5 Design and Develop CMOS Op Amps.
CO6 Assess the performance of sample and hold circuits and comparators in analog Ics suitable for societal use.
Course Content(Syllabus)
<u>UNIT I</u>

PART A: Basic MOS Devices: The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, Latch up in CMOS Technology, Short Channel Effects in MOS Transistors.

PART B: CMOS Device Modelling: Weak Inversion in MOS Transistors Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Subthreshold MOS Model.

UNIT II

PART A: Current Mirrors: Current Sinks and Sources, Simple Current Mirrors, Simple Current Mirror with Source Degeneration, Cascode Current Mirror and Wilson Current Mirror.

PART B: Biasing Techniques: CS Biasing, CG Biasing, Source Follower Biasing, Differential Pair Biasing.

UNIT III

PART A: Single Stage Amplifiers: Common Source Stage with resistive load, Source follower, Common Gate Stage, Cascode Stage.

PART B: CMOS Operational Amplifiers: Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

<u>UNIT IV</u>

PART A: Sample and Hold Circuits:

Performance of Sample and Hold Circuits, MOS Sample and Hold Basics, Examples of CMOS S/H circuits, Bipolar and BICMOS Sample and Hold circuits.

PART B: Comparators:

Using an Opamp for a Comparator, Charge-Injection Errors, Latched Comparators, Examples of CMOS and BiCMOS Comparators.

TEXT BOOKS:

1. Design of Analog CMOS Integrated Circuits, Behzad Razavi, Tata McGraw Hill, 2nd Edition, 2008.

2.Analog Integrated Circuit Design- David A.Johns, Ken Martin, Wiley Student Edn, 2013. **REFERENCES:**

1. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.

2.CMOS Analog Circuit Design – Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
C01	3	3	-	-	2	-	-	-	-	-	2	-	-	2
CO2	3	3	-	-		-	-	-	-	-	-	3	3	-
CO3	3	3	-	-	-	-	2	-	-	3	-	-	-	-
CO4	-	-	3	3	3	-	-	-	2	-	-	-	3	-
CO5	3	2	-	-	3	-	-	-	-	-	-	-	3	-
CO6	3	2	-	-	-	3	-	3	-	-	-	3	-	-

PROFESSIONAL ELECTIVE-VI COMPUTER NETWORKS

Lecture	– Tutorial:	3-0 Hours	Internal Marks:	40
Credits	:	3	External Marks:	60
Prerequ	isites: Basic concep	ts of networks, Analog Co	ommunication, Digital Communica	ation.
Course	Objectives:			
• U	nderstand the layered	d communication architec	tures (OSI and TCP/IP).	
• U	nderstand various ne	twork topologies required	for communications.	
• D	emonstrate the Funct	ions of various protocols of	f Data link layer and understand th	he basics o
	error detection inclue	ding parity, checksums, an	nd CRC.	
• D	emonstrate Functioni	ng of various Routing prote	ocols.	
• A	nalyze the Functions	of various Transport layer	protocols.	
• U	nderstand the signific	ance of application layer p	rotocols.	
Course	Outcomes:			
Upon s	ccessful completion	n of the course, the stude	nt will be able to:	
CO1	Acquire knowled	ge about different networ	k models like OSI and TCP/IP a	nd various
	network topologie	es like WAN, LAN and M	AN.	
CO2	Distinguish differ	ent modes of wired trans	mission media such as copper wi	ire, twisted
	pair wire, OFC an	d wireless transmission m	edia.	
CO3	Analyze various	error detection techniques	and functions of various protocols	of Data
	link layer.	1	1	
CO4	Analyze MAC lay	ver protocols and LAN tec	hnologies.	
CO5	Design different	routing protocols and acqu	ire knowledge on significance of v	various
		Congestion control Mecha		
CO6			us Application layer Protocols.	
		Course Content(Syllabus		
		<u>UNIT I</u>		
DIDT	A. T. 4 1		LAN MAN Defense modele	

PART A: Introduction: Network Topologies WAN, LAN, MAN. Reference models- The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models.

PART B: Data Link Layer Design Issues, Error Detection and Correction, Elementary Data Link Protocols, Sliding Window Protocols

<u>UNIT II</u>

PART A: The Data Link Layer - Services Provided to the Network Layer – Framing – Error Control – Flow Control, Error Detection and Correction, Sliding Window Protocols-A One Bit Sliding Window Protocol-A Protocol Using Go-Back-N- A Protocol Using Selective Repeat.

PART B: The Medium Access Control Sublayer -The Channel Allocation Problem-Static Channel Allocation-Assumptions for Dynamic Channel Allocation, Multiple Access Protocols-Aloha-Carrier Sense Multiple Multiple Access Protocols- Collision-Free Protocols-Limited Contention Protocols-Wireless LAN Protocols.

UNIT III

PART A: The Network Layer - Design Issues – Store and Forward Packet Switching-Services Provided to the Transport layer- Implementation of Connectionless Service-Implementation of Connection Oriented Service- Comparison of Virtual Circuit and Datagram Networks

PART B: Routing Algorithms-The Optimality principle-Shortest path Algorithm, Congestion Control Algorithms-Approaches to Congestion Control-Traffic Aware Routing-Admission Control-Traffic Throttling-Load Shedding.

UNIT IV

PART A: Transport Layer: Introduction and Transport Layer Services : Relationship Between Transport and Network Layers, Overview of the Transport Layer in the Internet, Multiplexing and De-multiplexing.

PART B: Connectionless Transport: UDP -UDP Segment Structure, UDP Checksum, Principles of Reliable Data Transfer-Building a Reliable Data Transfer Protocol, Pipelined Reliable Data Transfer Protocols, Go-Back-N(GBN), Selective Repeat(SR),**Connection Oriented Transport:** TCP - The TCP Connection, TCP Segment Structure. **Application Layer:** The DNS, Electronic Mail, FTP Commands and Replies

TEXT BOOKS:

1.Computer Networks, Tanenbaum and David J Wetherall, 5th Edition, Pearson Edu, 20102.Computer Networks: A Top Down Approach, Behrouz A. Forouzan, Firouz Mosharraf, McGraw Hill Education

REFERENCES:

1.Larry L. Peterson and Bruce S. Davie, "Computer Networks - A Systems Approach" (5th ed), Morgan Kaufmann/ Elsevier, 2011

	,		/	Ŭ ý										
	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	-	2	-	-	-	-	-	-	-	3	3	-
CO2	2	-	2	-	1	-	-	-	3	-	-	-	-	-
CO3	3	2	-	2	-	3	-	-	-	-	-	-	-	2
CO4	2	-	1	-	-	-	-	2	-	-	2	-	3	-
CO5	-	2	2	-	2	-	2	-	-	-	-	-	-	-
CO6	3	-	2	-	2	-	-	-	-	2	-	2	-	2

PROFESSIONAL ELECTIVE-VI

Lecture	e – Tutorial:	RNET OF THINGS AN 3-0 Hours	Internal Marks:	40
Credits		3	External Marks:	60
		Systems, Microcontrollers		00
-	Objectives:	Jystems, whereeontroners	, operating bystems.	
	•	t Objects and IoT archites	turo	
		t Objects and IoT architec	machine) with necessary protocols.	
		various security concepts		
	-	system using Arduino and		
	-	nalytics and cloud in the c	1 · 1	
	Outcomes:	naryties and cloud in the c		
		on of the course, the stud	lent will be able to:	
CO1	-	ne term 'internet of things	'in different contexts and to analy	yze various
CO2		l analyze Software defined	d networks.	
CO3	Explore IT Acce 802.11ah and Lo	-	urity for IEEE 802.15.4, 802.15.4g,	802.15.4e,
CO4	Explore and lear using Arduino ar		s with the help of preparing projec	ts designed
CO5	11.0		ngs related to design and develop a s errors in the application.	solution for
CO6	Implement real capability.	field problem by gained	knowledge of Industrial application	ns with IoT
	_	Course Content	(Syllabus)	
		UNIT	Ι	

PART A: INTRODUCTION TO INTERNET OF THINGS:

Definition and characteristics of IOT, Evolution of IOT, Logical view of IOT ecosystem, Functional blocks of IOT: Sensors, Actuators, Smart Objects and connecting smart objects, Physical design of IOT-IOT Protocols, IOT Communication models, Calm and Ambient Technologies.

PART B:FUNDAMENTALS OF IOT:

The Internet of Things: An overview, The Flavor of the IOT, Design principles for connected devices, IOT Architectures, OneM2M, IOT World Forum (IoTWF) and alternative IOT Models.

UNIT II

PART A: IOT and M2M:

Software defined networks, Network Function Virtualization, Difference between SDN and NFV for IOT, Basics of IOT system management with NETCONF, YANG-NETCONF, YANG, and NETOPEER.

PART B: IOT PRINCIPLES & IOT COMMUNNICATION ARCHITECTURE:

IOT nodes, IOT Edges, 6 LOWPAN, Optimizing IP for IOT: IP, TCP, The IP Protocol suite (TCP/IP), UDP, IP Address, Static IP Address Assignment, Dynamic IP Address Assignment, IPV4 & IPV6.

<u>UNIT III</u>

PART A: IOT PROTOCOLS:

IT Access Technologies: Physical and MAC Layer, Topology and Security of IEEE 802.15.4, 802.15.4g, 802.15.4e, 802.11ah and Lora WAN.

PART B: IOT PHYSICAL DEVICES & END POINTS:

Embedded Computing basics, Microcontrollers, System-On-Chip, IOT system building blocks, Arduino, Raspberry PI – Installation, Interfaces (Serial, SPI, I2C).

<u>UNIT IV</u>

PART A: IOT PHYSICAL SERVERS AND CLOUD OFFERINGS:

Introduction to Cloud Storage models and Communication API Servers- Web Server for IOT, Cloud for IOT, Getting started with an API, Mashing up API, Scraping, Legalities, Writing a New API, Application Layer Protocols: MQTT, COAP, Extensible Messaging and presence protocol (xmpp).

PART B: INTRODUCTION TO INDUSTRY 4.0 AND HOT:

Defining Industry 4.0, Characteristics of Industry 4.0, and Benefits to Business, Industry 4.0 Design Principles, Building blocks of Industry 4.0, Industry 4.0 Reference Architecture, and Smart Factories. Concept of 5G Technology: A New Step to IOT Platform. Case study/ Industrial Application.

TEXT BOOKS:

1 Adrian McEwen, Hakim Cassimally - Designing the Internet of Things, Wiley Publications, 2012.

2. Internet of Things - A Hands-on Approach, ArshdeepBahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547.

3. The Internet of Things – Key applications and Protocols, Olivier Hersent, David Boswarthick, Omar Elloumi and Wiley, 2012.

4. IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, Cisco Press, 2017.

5. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

6. Industry 4.0; The Industrial Internet of Things, Alasdair Gilchrist.

REFERENCES:

1. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015 3. Editors Ovidiu Vermesan.

2. Internet of Things Architecture Final Architectural Reference Model for the IoT v3.0, <u>http://www.iot-a.eu/public</u>.

3. From Machine-to-Machine to the Internet of Things – Introduction to a New Age of Intelligence", Jan Ho[°] ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle and Elsevier.

4. The Internet of Things, Enabling technologies and use cases – Pethuru Raj, Anupama C. Raman, CRC Press.

	/		/	U /										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PS O2
CO1	3	-	-	-	2	3	-	-	3	-	2	2	3	
CO2	-	2	-	3	-	-	-	-	2	-	-	-	-	3
CO3	-	3	2	-	-	1	-	2	-	3	3	2	2	-
CO4	3	-	-	3	-	-	-	-	3	-	-	3	-	-
CO5	-	2	-	-	-	-	-	-	2	-	2	-	-	3
CO6	-	-	2	-	2	-	2	-	-	2	-	2	-	-

L T P C 3 0 0 3

PROFESSIONAL ELECTIVE-VI ARTIFICIAL INTELLIGENCE

		ARTIFICIAL INTE	LLIGENCE		
Lectur	e – Tutorial:	3-0 Hours		Internal Marks:	40
Credits	5:	3		External Marks:	60
Prereq	uisites: Data Structur	res, Algorithms and Prob	oability		
Course	Objectives:				
• T	o learn the difference	between optimal reason	ing vs human li	ke reasoning.	
• T	o understand the not	ions of state space repr	resentation, exh	austive search, heurist	ic search
a	longwith the time and	d space complexities.			
		vledge representation tec	-		
		pplications of AI: name	•		g, Expert
		rning and Natural Langu	age Processing		
	Outcomes:				
-	-	n of the course, the stud			
CO1	Formulate an effici	ent problem space for a	problem expres	sed in English.	
CO2	Identify a search al	gorithm for a problem a	nd characterize	its time and spacecomp	plexities.
CO3	Acquire skills for r	epresenting knowledge	using the appro-	priate technique.	
CO4	Apply AI techniq	ues to solve problems	of Game Play	ving, Expert Systems,	Machine
	Learning and Natu	ral Language Processing	ç.		
CO5	Apply the knowled	ge to develop the solution	ons for real life	problems.	
CO6	1 0	ithms to contribute to th		a.	
	(Course Content(Syllabu	us)		
		<u>UNIT I</u>			

PART A: Introduction: History, Intelligent Systems, Foundations of AI, Sub areas of AI, Applications.

PART B: Problem Solving: State-Space Search and Control Strategies: Introduction, General Problem Solving, Characteristics of Problem, Exhaustive Searches, Heuristic Search Techniques, Iterative-Deepening A*, Constraint Satisfaction.

<u>UNIT II</u>

PART A: Logic Concepts and Logic Programming: Introduction, Propositional Calculus, Propositional Logic, Natural Deduction System, Resolution Refutation in Propositional Logic, Predicate Logic, Logic Programming.

PART B: Representing Knowledge Using Rules: Logic programming, Procedural Vs Declarative knowledge, Forward Vs Backward Reasoning, Matching, Control Knowledge.

UNIT III

PART A: Knowledge Representation: Introduction, Approaches to Knowledge Representation, KnowledgeRepresentation using Semantic Network, Extended Semantic Networks for KR.

PART B: Knowledge Representation using Frames: Conceptual dependencies, Scripts.

<u>UNIT IV</u>

PART A: Natural Language Processing: Steps in The Natural Language Processing, Syntactic Processing and Augmented Transition Nets, Semantic Analysis, NLP Understanding Systems.

PART B: Fuzzy Logic: Crisp Sets, Fuzzy Sets, Fuzzy Logic Control, Fuzzy Inferences & Fuzzy Systems Planning with state-space search – partial-order planning – planning graphs – planning and acting in the real world.

AI Programming languages: Overview of LISP and PROLOG, Production System in Prolog. **TEXT BOOKS:**

1. Artificial Intelligence, Elaine Rich and Kevin Knight, Tata Mc graw-Hill Publications.

2. Introduction To Artificial Intelligence & Expert Systems, Patterson, PHI publications. **REFERENCES:**

1. Artificial Intelligence, George F Luger, Pearson Education Publications

2.Artificial Intelligence : A modern Approach, Russell and Norvig, Printice Hall

3. Artificial Intelligence, Robert Schalkoff, Mcgraw-Hill Publications

4. Artificial Intelligence and Machine Learning, Vinod Chandra S.S., Anand Hareendran S.

	РО	PSO	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	1	02
CO1	3	2	2	-	-	-	-	3	-	-	-	-	-	-
CO2	-	2	2	1	-	3	-	-	-	-	-	-	3	-
CO3	3	-		-	1	-	3	-	-	3	-	-	-	-
CO4	-	2	3	-	-	-	-	-	-	-	-	-	3	2
CO5	3	-	2	-	2	-	-	-	-	3	2	-	-	-
CO6	-	2	3	1	-	-	-	•	1	•	-	-	3	1